
ISRAEL JOURNAL OF MATHEMATICS, Vol. 68, No. 1, 1989 

ALGEBRAIC FUNCTION FIELDS OF 
ONE VARIABLE OVER FINITE FIELDS 

ARE STABLE 

BY 

WULF-DIETER GEYER ~ 
Mathernatisches Institut, Universit,~t Erlangen -- Narnberg, 

Bismarckstr. 1~, 852 Erlangen, FRG 

ABSTRACT 

It is shown that any algebraic curve C over a finite field has a separable cover 
of some degree n over the projective line P~ such that the geometric Galois 
group of the Galois hull of C [ P~ is the full symmetric group Sn. 

§0. Statement  of  results 

In this note, the following will be shown: 

PROPOSITION. Let K I Fq be afield of  algebraic functions of  one variable, i.e. 
a finitely generated regular extension of transcendence degree one. Let Fq 
denote the algebraic closure ofFq. Then there exists an (arbitrary large) integer 
n and an element x ~ K  such that K [ Fq(X) is separable of  degree n and 
Gal(/~ ] Fq(X)) = S,, where I~ is the normal closure of  KFq ] Fq(X). 

REMARK 1. Let /~be the normal closure o fK  [ Fq(x), so/~ =/~Fq. Since Sn 
is the maximal Galois group of a polynomial of degree n, from the propos i t i on  

it follows that 

Gal(/~ ] Fq(X)) = Gal(/(IFq(X)). 

Especially,/~ I Fq is a regular extension. Therefore the function field K ]Fq is 

called stable, cf. [4], p. 222. 
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REMARK 2. In the form of  Remark 1 the proposition was first shown by 
Madan and Madden in [7]. But their proof  missed the case of char K -- 2. In 
the following proof their ideas are used, but the construction and the means 
used are simplified, e.g. by replacing the theorems of Marggraf and Manning 
on multiple transitive groups by an older and easier theorem of Jordan. 

REMARK 3. The proposition in case of conservative curves over infinite 
fields k has been handled (see [3] and [5]) using the ramification structure of 
K I k(x), showing there is an x such that the geometric ramification is of the 
simplest possible type (2,1 . . . .  , l) over any ramified point of the line. This 

cannot be done over a finite field k. Therefore decomposition groups are used, 
to get the Galois group large. 

§1. Decomposition groups 

For the convenience of  the reader, some basic facts on decomposition 
groups are recalled, which refine the standard definitions (cf. e.g. [4], p. 15). In 
this section the following situation is fixed: Let L [ K be a separable extension 
of fields of degree n, say L = K(y0, given by some irreducible polynomial 

g(X) = fi (X-y~)~K[X] .  
i~l  

Let £ =K(yl, Y2 . . . . .  Yn) be the Galois hull of  L[K.  We look a t -G = 
Gal(£ [K) as a permutation group Gal(g [K) on the set {y~, Y2 . . . . .  y.} of 
roots of g. Let p be a discrete valuation of  K with residue field K(p). It 
decomposes in L into 

with residue degrees [L(~i)" K(p)] = f ,  and we assume (as is the case in all 
usual situations) that 
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e i f  = n .  
i = 1  

Then the decomposition above corresponds to a decomposition 

g --- g~ . . . . .  gr with irreducible gi ~ K o [X] 

of the polynomial g over the p-adic completion K 0 of K with deg g~ = eifi. * We 
call 

Go '=  Gal(g I K0) 

the decomposition group o f L  I Ka t  the place p. Of course, it is a subgroup of G 
as permutation group. Let/~), be the Galois hull of L~, [ Kp, i.e. the decom- 
position field ofg~ over K 0. Then the composite of all fields/~, is isomorphic to 
the completion of/~ at any extension of p to/~. 

REMARK. The local Galois groups 

O~, :=  Gal(g, I K~) ~ Gal(£~, I K,) 

are also called the decomposition groups of L J K at the place ~i. If L = L is 
Galois over K, then the groups 

Gal(£ , I = (~r ~ G ;  a ( ~ i )  = ~,)  

form a family of conjugate subgroups of G, isomorphic to Q ;  but G~, is not a 
subgroup as permutation group, since it operates only on the roots ofg~. But in 
the non-Galois case, the groups G~, are only factor groups of Q ,  and not 
necessarily subgroups of G. 

In the proof of  the proposition the following facts on decomposit ion groups 
are used, which rely on simple facts about extensions of local fields, cf. [6], §14: 

FACT 1. Let K( p) be finite. I f  el = e 2  . . . . .  e, = 1, i.e. i f  p is unramified 
in L ] K, then Gp is a cyclic group, generated by a permutation consisting o f t  
disjoint cycles of  length f ,  f2, . . . , f .  

f Ify~ is appropriately chosen, then gi mod p is the ei-th power of an irreducible polynomial of  
degreef~ over the residue class field K(p). We are not going to use this fact, which is important for 
computations but has one complication: As Dedekind ([2], pp. 404-406) 1871 remarked, it may be 
possible that one cannot choose y~ simultaneously for all g~, due to the existence of'ausserwesent- 
liche Diskriminantenteiler.' By Hensel's methods (see e.g. [6], §21, §25) the standpoint of 
completions gives a more complete picture than Kummer's congruential standpoint. 
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PROOF. Since the residue field K(p) is finite, the Galois group of any 
unramified extension of K~ is generated by the corresponding Frobenius, which 
permutes the roots of each gi cyclically. 

FACT 2. Let K(p) be finite. I f  et = 1, i.e. ~3~ is unramified in L I K, iffl is 
odd and prime to f for all i > 1, and i f  ei < 2 for all i, then Gp contains an 
fl-cycle. 

PROOF. If ei = 2, then L~, is a quadratic extension of the unramifield 
extension K~  ~ of degree f, of K~. Then/S,~, is the composite of the quadratic 
extensions of K~ f,~ conjugate to L~, I K~ f,~ over Kp. Therefore G~, has exponent 
2f,. Now take any a E Gp which induces the Frobenius on g~. Then tr ~ with 

N = 2. lcm{ f2 . . . . .  f ) 

is an f -  cycle. 

FACT 3. Let the residue field K(p) be algebraically closed of  characteristic p 
( = 0 or ÷ 0). I f  all e~ are prime to p, then Gp is a cyclic group, generated by a 
permutation consisting of r disjoint cycles of length e~, e2 . . . . .  e ,  

PROOF. All tamely ramified extensions of K~ are cyclic, generated by the 
corresponding root of any prime element. So the same argument works as in 
the proof of Fact 1. 

§2. Proof of the Proposition 

Step 1. Find prime divisors of  K I Fq 
By the Riemann hypothesis the number Pr of prime divisors of degree r in 

K I Fq is asymptotically 

qr 
Pr = -- + O(q ~/2) (r --  oo) 

r 

cf. [4], p. 41. Therefore there is an r 0 such that 

(l) Pr > 0 i f r  _--_- To. 

Now choose an odd prime number 10 > max(r0, 2g - 1, g + 1), where g is the 
genus of K ] Fq, and choose a larger prime l of the form 

(2) l = l o + 2 U ,  U>ro, u ~ l m o d 2 .  

By (1) choose prime divisors ~, ~ of K with 
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deg ~ = u, deg ~ = 10. 

Step 2. Find the function x 
Let a be an element of a normal base ofFq= I Fo and t be a prime element of~3. 

Then choose a function x such that 

(3) x ---- + mod ~0, 

(4) x = 0 mod ~ - l, 

and x integral at all places ~ ~, £ .  The obstruction to these congruences is the 
differential module f~(~0~), of. [ 1 ], Chap. II. Because deg ~ = l0 > 2g - 2, this 

module vanishes. The dimension of the affine space of solutions of (3) and (4) 

is, by the theorem of Riemann-Roch, 

dim L(~)  = lo + 1 - g > 2 

whereas the space of solutions of (3) and x = 0 mod £0 has at most dimension 

1. So there are solutions x with ord~ x - - 1, i.e. the divisor o f x  is 

9~ 
(5) ( x )  = 

for some integral divisor 9~ of degree 2u + 10 = l, prime to ~ and £.  If 
char K :# 2, the equation (5) is sufficient for the following. The more precise 

congruence (3) is only necessary if char K - - 2 .  From (5) it follows that 

K I Fq(x) is a separable extension of prime degree I. 

Step 3. Show that G = Gal(/~ I Fo(x)) ->- At 
The pole p o f x  in Fq(x) resp. Fq(x) splits in K resp. KFq as 

p = ~32~ deg ~3 = u, deg ~ = lo, 

= ~ 3 ~ . . .  ~ l " " "  ~lo (splitting in KFq). 

We look at G as a subgroup of the symmetric group St. Since G is transitive of 

prime degree, it is primitive. The decomposition group Gp contains from the 

factor ~ ofp  an/o-cycle (Fact 2 in §1). By a theorem of C. Jordan from 1873 

(see [8], Theorem 13.9), a primitive subgroup of St containing an/0-cycle with 

lo prime and lo < l - 2 has to contain the alternating group At. 

Step 4. Show that G = Gal(/~ ] Fq(x)) = St 
Since At is a simple group and Gal(Fq I Fq) is abelian, from step 3 it follows 
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that G >_- AI. To show the claim of step 4, which is the claim of the proposition, 
one has to find an odd permutation in G. For this let us look at the ramified 
prime divisors ~ ,  ~2 . . . . .  ~ -  

If char K ~ 2, the decomposition group G~ contains a product ofu transposi- 
tions (Fact 3 in §1), which is an odd permutation. 

If char K = 2, the decomposition group G~ has to be determined more 
carefully. From the ramification structure of p in KFq [ Fq(x), one only gets 
that (~ is some subgroup of (Z/2Z) ". From (3) one gets 

1 1 
(6) a x = ~ + t +  ~ a , t  i (a,~Fq.). 

i=0 

We choose a new prime element r of K~ instead of t such that the above 
equation becomes 

(7)  T -2  ..~ ~--l  = aX "~- a0, 

This can be done by substituting 

b/J (bier:) 
j = l  

into (7) and comparing with (6), which gives equations 

a2. - l = b2._ l, a2. = bz.  + b~ (n ~ N) 

which recursively determine the coefficients bj. 
On the quadratic equation (7) for K~ over F¢((x-1)) operates the Frobenius 

of Fq. ]Fq, giving conjugate equations 
q~ 

(8) z i - 2 + z i  -1 = aq'x + ao (1-_<i_-<u) 

which generate the quadratic extensions (KFq)~, [Fq((x-l)). Since the a °' 
are F2-independent as normal base over Fq, the equations (8) generate by 
Artin-Schreier theory linearly independent quadratic extensions of Fq((X-~) ) .  

Therefore the decomposition group G 0 is isomorphic to the full group ( Z / 2 Z )  u , 

generated by u disjoint transpositions. Especially, G contains odd per- 
mutations, and therefore G = St.  This ends the proof of the proposition. 
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